Electronics Packaging Methods and Materials for Implantable Medical Devices

Susan Bagen, Ravi Subrahmanyan*, Ruben Perrone** Eckardt Bihler*** and Daniel Schulze***

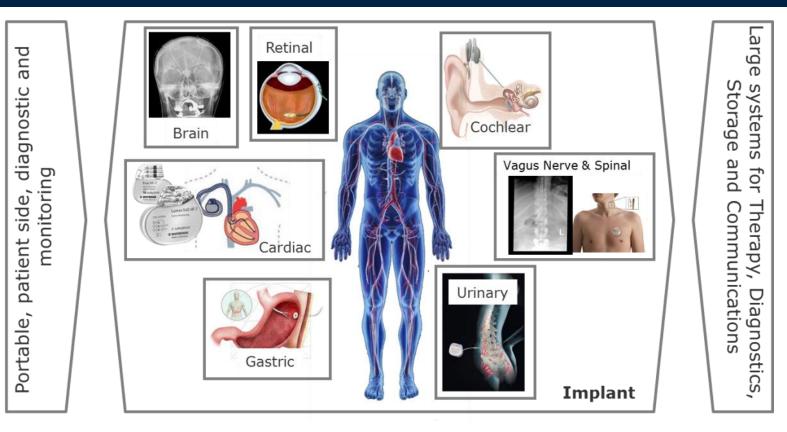
Micro Systems Technologies, Inc.

1839 S. Alma School Road, Suite 270 Mesa, AZ 85210-3024 USA Ph: 972-839-7465 Email: susan.bagen@mst.com

*Micro Systems Engineering, Inc., ** Micro Systems Engineering GmbH,

***Dyconex AG

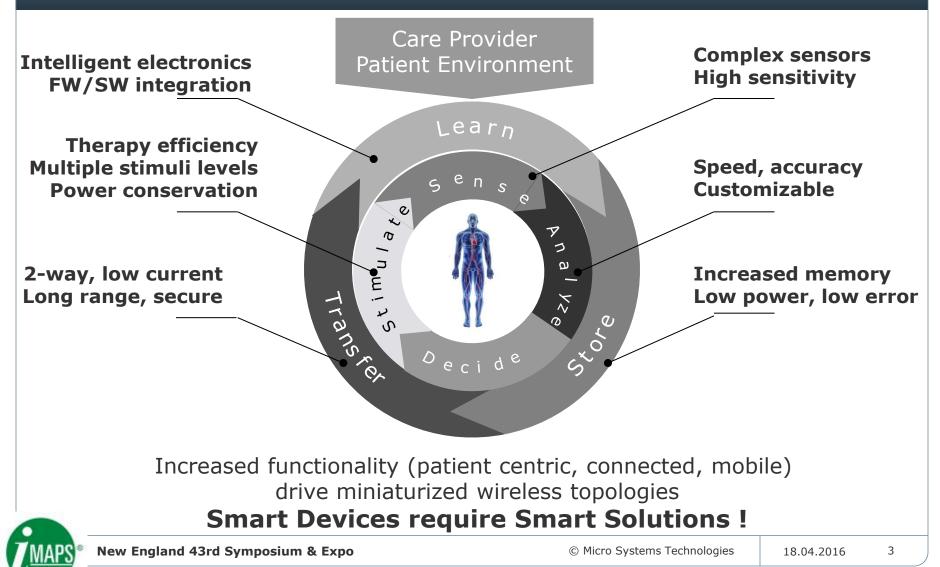
YCONEX


New England 43rd Symposium & Expo

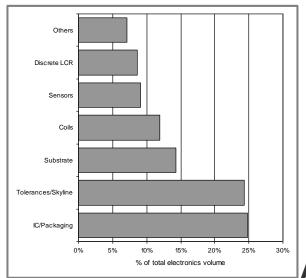
ENGINEERING

Medical Microelectronics – Situation

Technology use from other industry segments not always feasible


- Miniaturized form factors Flat, cylindrical, body conforming
- Medical requirements Low power, Reliability, cost, and supply continuity

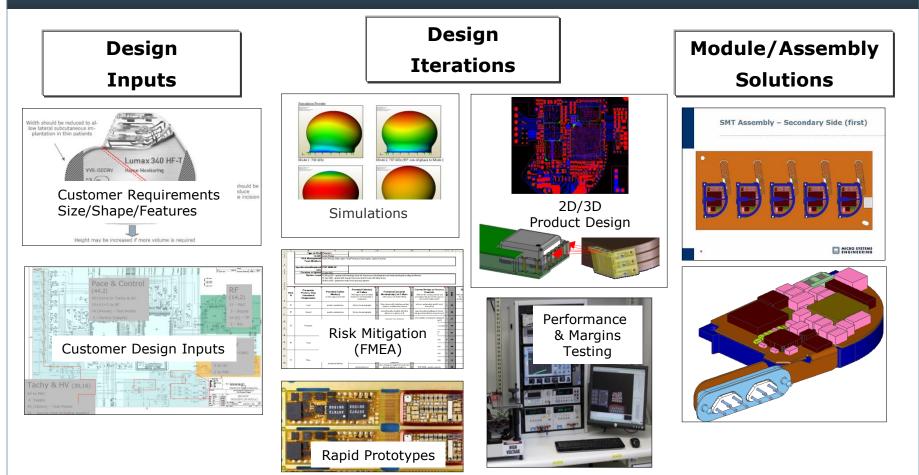
Smart Medical Microelectronics – Trends


Micro Systems Technologies engineering for life

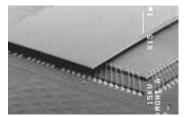
Design Strategies – Challenges

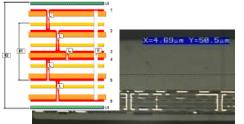
• Ultra Low power, high voltage, high frequencies

- Physiological shape → unique electronics form factors
 - Flat/folded, cylindrical/annular, body conforming/spherical
- Non-uniform component "skyline" → 3D density <65%
- Ultra-miniaturization requires flexible 3D interconnects

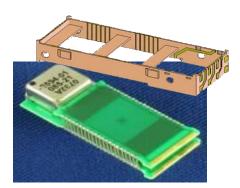

A comprehensive design approach required

Design Strategies – A Comprehensive Approach

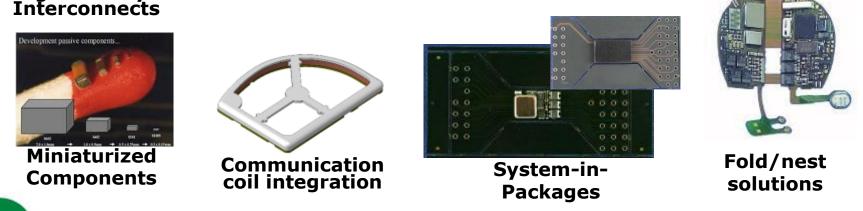

Methodology (FMEA, Dfx), Simulation, Platforms/Knowledge base



Design Strategies – Key Miniaturization Solutions



Stacked ASIC Die



High Density Interconnects

- Early adoption of advanced packaging and interconnects
- Leverage of strategic partnerships
- Integrated development of assembly/ test from prototype to manufacturing
- Comprehensive focus on reliability from design to manufacturing

Advanced 3D Interconnects

© Micro Systems Technologies

Substrates

• The substrate is the backbone of an electronic device

- It interconnects all components electrically
- It is the mechanical carrier for the components

• Substrate technology has a direct impact on

- Achievable form factors
- Available assembly processes
- Reliability and performance of the device

• Substrate technologies

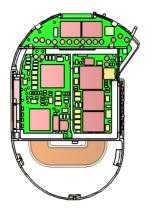
- Rigid Substrates \rightarrow based on glass reinforced materials
- Full Flex Substrates \rightarrow based on flexible polymer films
- Rigid-Flex Substrates \rightarrow a combination of the above
- New Substrates \rightarrow Biocompatible

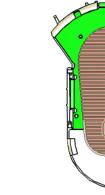


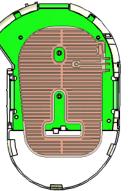
MICRO SYSTEMS ENGINEERING

Substrates to Achieve Various Form Factors

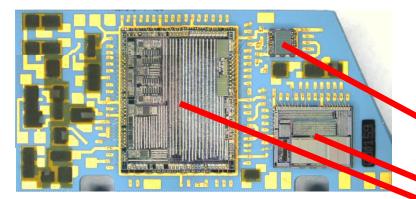
New England 43rd Symposium & Expo



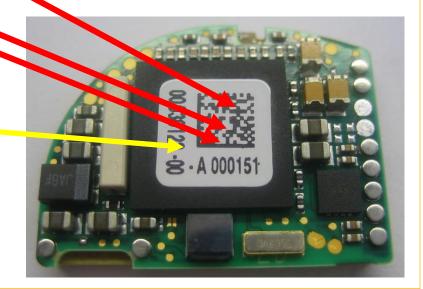




Folded Module



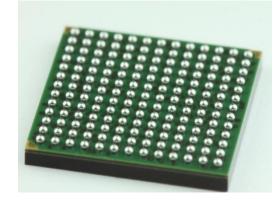
Progression of Packaging


Active Medical Implant Buildup (Cardiac Pacemaker)

Functionality is distributed among three ASICS; COB-Assembly

Functionality in one SDBGA (Stacked Die Ball Grid Array)

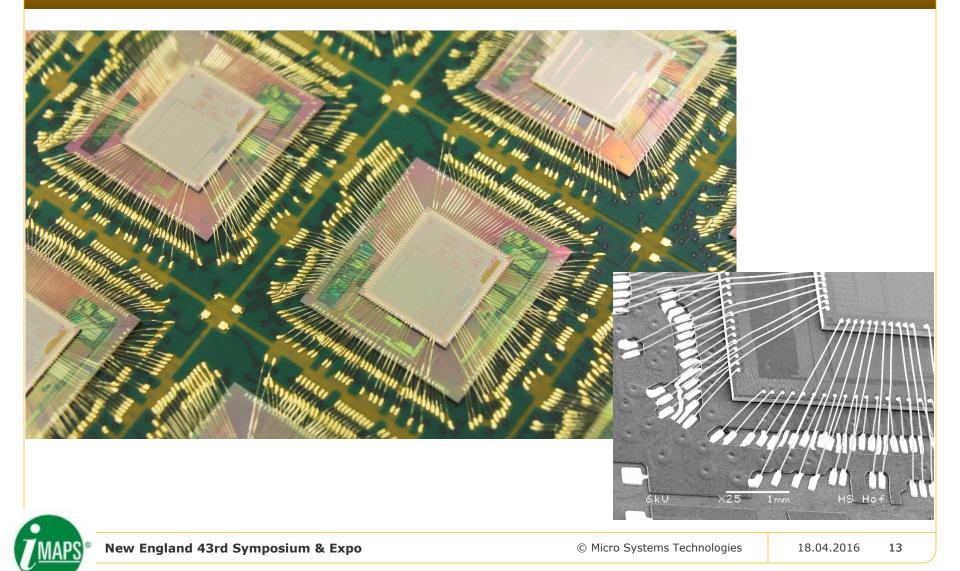
Improvement in the Level of Integration

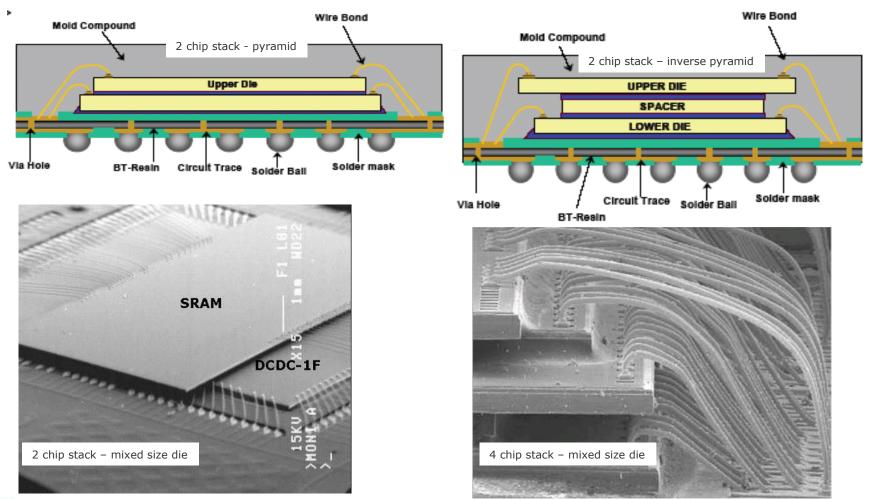


SDBGA Packages

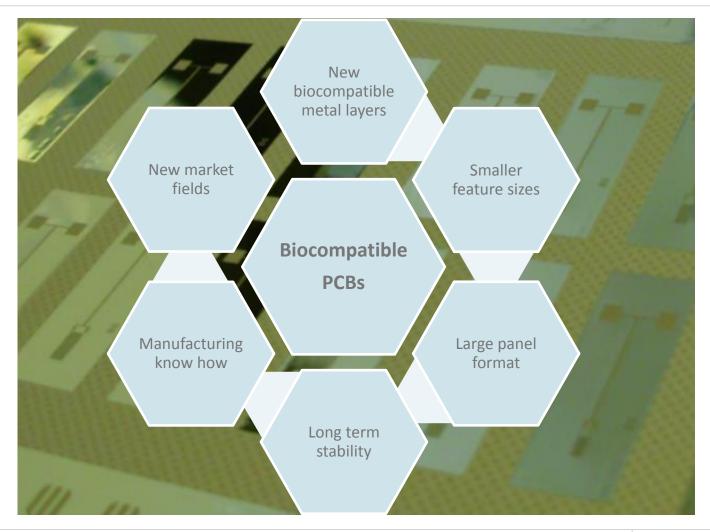
- Robust Package
- Package is mounted in a Standard-SMT-Process
- Parallel (=faster) Assembly Process
- Complete electrical Test after Packaging

SDBGA Packages for Medical Implants

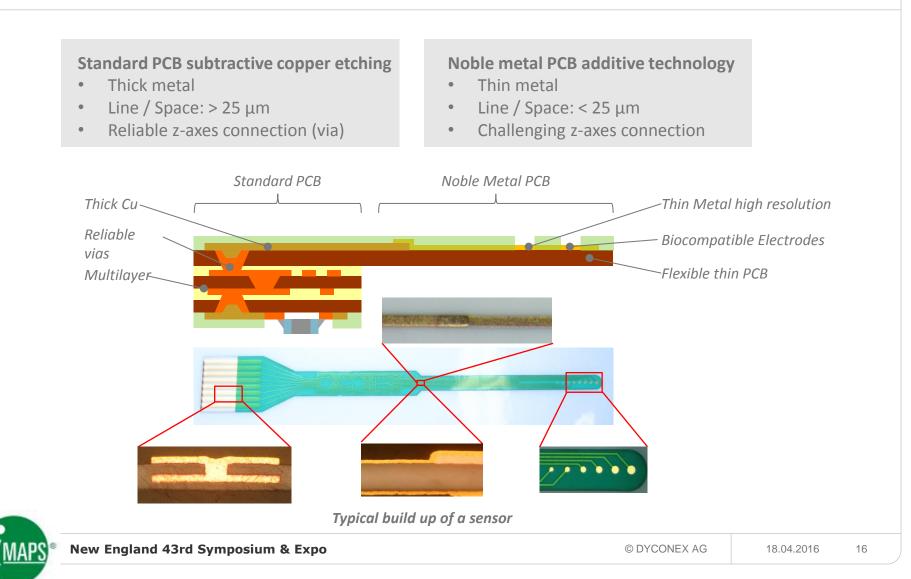

- Material and Process Traceability
- Traceability of the assembled dice down to their x-y position on the wafer
- Assembly of Known Good Die; complete electrical test is performed on wafer level
- Small to Mid Volumes
 - Limited Availability from Packaging Companies


SDBGA Packaging

SDBGA Solutions



Biocompatible Substrates



COMPARISON: Standard PCB vs. Noble Metal PCB

ISO 10993-1:2009 + Cor 1:2010 Regulation

Definition of biocompatibility:

"The quality of not having toxic or injurious effects on biological systems." *

The ISO 10993-1:2009 + Cor 1: 2010 set a series of standards for evaluating the biocompatibility of a medical device prior to a clinical study. **

- 18 different specification points
 - ISO 10993-1:2009 Biological evaluation of medical devices Part 1: Evaluation and testing in the risk management process
 - to
 - ISO 10993-18:2009 Biological evaluation of medical devices Part 18: Chemical characterization of materials
 Project Risk

"There is no bio-incompatible material.... the dose makes the poison"

 Wrong constraint
 Patient Risk

 too carefully
 too careless

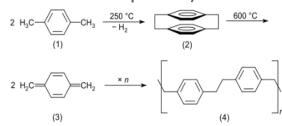
 Bio PCB Project
 Bio PCB

 New England 43rd Symposium & Expo
 * Dorland's Medical Dictionary ; ** Wikipedia
 © DYCONEX AG
 18.04.2016
 17

ISO 10993-1:2009 + Cor 1:2010 Biological Evaluation Tests

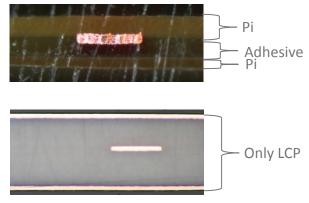
- Not all tests are essential but a base knowledge of ISO 10993 is mandatory
- Substrates processed by DYCONEX have been successfully tested for ISO 10993-5 Test for in vitro cytoxicity

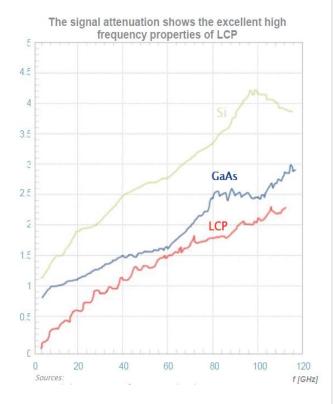
Medical Device Category			Biological Effect								
Nature of Body Contact Category Contact		Contact Time A- limited (< 24 h) B- short term (24h - 30 d) C - permanent (> 30 d)	Cytoxiticity	Sensitization	Irritation or intra cutaneous reaction	Systematic Toxiticity	Subacute and subchronic toxiticity	Genotoxiticity	mplantation	Hemocompabtibility	Chronic toxiticity Carcinogenicity
Surface Device	Skin	А	x	x	 x	0,	0, 0,	0		-	00
		В	X	x	x						
		С	х	х	х						
	Mucosal menbrane	A	х	х	х						
		В	х	х	х	0	0				
		С	х	х	х	0	х	х	0		0
	Breached surface	А	х	х	х	0					
		В	х	х	х	0	0		0		
		С	х	х	х	0	х	х	0		0
External Device	Blood Path Direct	A	х	х	х	х				х	
		В	х	х	х	х	0			х	
		С	х	х	0	х	х	х	0	х	0
	Tissue bones dentin	Α	х	х	х	0					
		В	Х	х	Х	х	х	х	х		
		С	х	х	Х	х	х	х	х		0
	Circulating blood	A	Х	х	х	0					
		В	Х	х	х	х	х	х	х		
		С	Х	х	х	Х	х	х	Х		0
Implant Device	Tissues bones	A	х	х	Х	0					
		В	х	х	х	х	х	х	х		
		С	Х	х	х	Х	х	х	Х		0
	Blood	Α	х	х	х	х	х		х	х	
		В	х	х	х	х	х	х	х	х	
		С	х	х	х	х	х	х	х	х	0
					est acco Addition	-	O 10993 (USA)	-1			



Material – Available Options

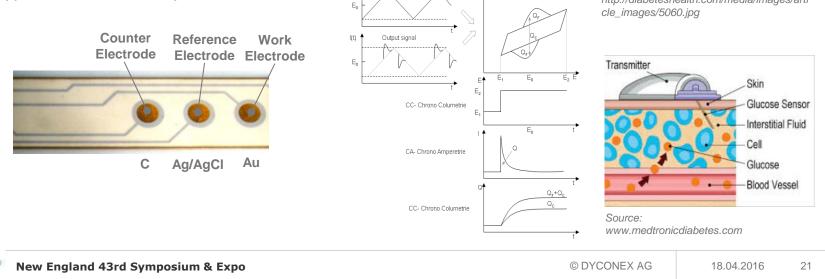
- For flexible applications:
 - Polyimide
 - LCP
- For rigid applications:
 - Glass
 - PEEK
 - Flexible material with a rigid stiffener
- Cover materials:
 - For flexible applications:
 - Solder mask (can be used for short term implants)
 - LCP
 - Parylene coatings




Micro Systems Technologies engineering for life

LCP – Liquid Crystal Polymer - Properties

- Very flexible thermoplastic base material
- Biocompatible properties
- High temperature stability (Tg > 280°C, Td > 320°C)
- Very low water absorption (0.04 %) in comparison to standard acrylic adhesives (8%)
- Excellent high frequency properties (ϵ_R = 2.9, tan θ = 0.0025)
- Low weight (3.2 g/cm³)
- For multilayer one homogeneous material



Application: Short Term Blood Glucose Sensors

- Compact, handheld, portable device, which measures blood glucose levels as part of a diabetes management regimen for the chronic diabetic
- Direct implantable bio sensor with clinical approved studies
 - flexible PCB substrate
 - flexible cover mask
- 30 days in human body ۲
- Measures capacitive electric charge current
- Typical 3-electrode system

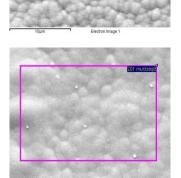
Source: http://diabeteshealth.com/media/images/arti cle_images/5060.jpg

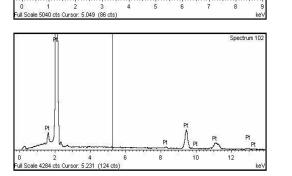
Input signal

E(t)

Application: Permanent Implant Cochlear Electrodes

- Need of pure biocompatible materials without copper for long term implant
 - LCP for excellent biocompatible properties
 - Au for good adhesion and flexible properties
 - Pt for selective electrodes robustness
- Test design with 125 μm traces on 250 μm pads
- Test structures with 15 μm Line / Space demonstrated


cover mask Pt Au LCP


pure gold electrodes

DYCONEX

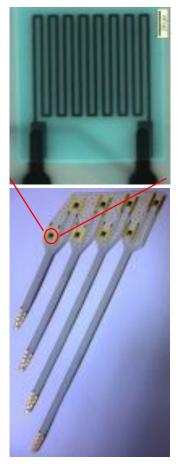
Spectrum 18

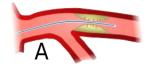
N =5.62 % C =2.84 %

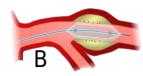
Au = 91.54 %

an MST company

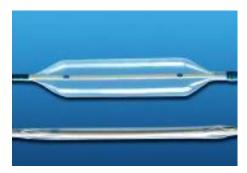
Application: Thermistors For Heat Measurements

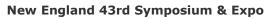

- Balloon catheters with electrodes for neurostimulation or ablation
- Invasive surgical procedure
- Extremely flexible ultra thin 2-layer LCP build up with 50 μm final thickness
- One thermistor per electrode couple with thin film layer




- 25 µm Line / Space
- One sided copper plating with 100% via-fill

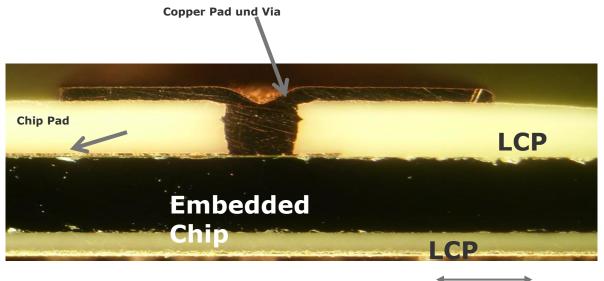
• Surface finish: electroplated gold on copper for short term implant





Source: http://de.wikipedia.org/wiki/Angioplastie

Source: http://www.p-wholesale.com/


© DYCONEX AG

Smart Electrodes: Embedded Die

Summary

- Electronics packaging for complex medical devices demands innovation and advanced capabilities, but achieved in a manner which ensures reliability and performance.
- This can be realized through adoption of multiple approaches including:
 - Substrates to accommodate unique form factors.
 - 3D packaging approaches like SDBGA.
 - Migration to biocompatible substrates where appropriate to enable new applications.

